Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

°­È­ÀçÀÇ »ç¿ë ¹æ¹ýÀÌ º¹ÇÕ ·¹Áø Àη¹ÀÌ ºê¸´ÁöÀÇ Æı« °­µµ¿¡ ¹ÌÄ¡´Â ¿µÇâ

The effect of reinforcing methods on fracture strength of composite inlay bridge

´ëÇÑÄ¡°úº¸Á¸ÇÐȸÁö 2007³â 32±Ç 2È£ p.111 ~ 120
º¯Ã¢¿ø, ¹Ú»óÇõ, ÃÖ°æ±Ô,
¼Ò¼Ó »ó¼¼Á¤º¸
º¯Ã¢¿ø ( Byun Chang-Won ) - °æÈñ´ëÇб³ ´ëÇпø Ä¡ÀÇÇаú Ä¡°úº¸Á¸Çб³½Ç
¹Ú»óÇõ ( Park Sang-Hyuk ) - °æÈñ´ëÇб³ ´ëÇпø Ä¡ÀÇÇаú Ä¡°úº¸Á¸Çб³½Ç
ÃÖ°æ±Ô ( Choi Kyoung-Kyu ) - °æÈñ´ëÇб³ ´ëÇпø Ä¡ÀÇÇаú Ä¡°úº¸Á¸Çб³½Ç

Abstract

º» ¿¬±¸´Â º¹ÇÕ·¹Áø Àη¹ÀÌ ºê¸´Áö¿¡¼­ °­È­ÀçÀÇ Ç¥¸é ó¸®¿Í »ç¿ë ¹æ¹ýÀÌ Æı« °­µµ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡ÇÏ¿´´Ù. º» ¿¬±¸¿¡¼­ »ç¿ëÇÑ °­È­Àç·á´Â I Beam, U Beam, 1 + U BeamÀ̾úÀ¸¸ç, Ç¥¸éó¸® ¹æ¹ýÀº Silane, Sandblast, HoleÇü¼º (U beam)À̾ú´Ù. °­È­ Àç·áÀÇ ±¸¼º°ú Ç¥¸é ó¸® ¹æ¹ý¿¡ µû¶ó ÃÑ 11°³ÀÇ ½ÇÇ豺À» ¼³Á¤ÇÏ¿´´Ù. »ó¾Ç ÀΰøÄ¡ ¸ðÇü¿¡¼­ Á¦2¼Ò±¸Ä¡ÀÇ ¹ß°Å »óŸ¦ °¡Á¤ÇÏ°í º¹ÇÕ·¹Áø Àη¹ÀÌ ºê¸´Áö Á¦ÀÛÀ» À§ÇÏ¿© ÀÎÁ¢ÇÑ Á¦1¼Ò±¸Ä¡¿¡ DO, Á¦1´ë±¸Ä¡¿¡ MO ¿Íµ¿À» Çü¼ºÇÏ¿´´Ù. ¿Íµ¿ÀÌ Çü¼ºµÈ ÀΰøÄ¡ ¸ðÇüÀ» °í¹« Àλóü¸¦ ÀÌ¿ëÇÏ¿© ¼®°í·Î Á¦ÀÛÇÏ°í, °¢ ½ÇÇ豺 º°·Î °­È­Àç·á¿Í °­È­ Àç·áÀÇ Ç¥¸é ó¸® ¹æ¹ý¿¡ µû¶ó Tescera ATL (BISCO Inc. IL, USA) º¹ÇÕ·¹ÁøÀ» »ç¿ëÇÏ¿© º¹ÇÕ·¹Áø Àη¹ÀÌ ºê¸´Áö¸¦ Á¦ÀÛÇÏ¿´´Ù ±× ÈÄ ½ÃÆíÀ» º¹Á¦¸ðÇü¿¡ Àλê¾Æ¿¬½Ã¸àÆ®·Î ÇÕÂøÇÏ°í Universal testing machine (EZ Test, Shimadzu, Japan)À» ÀÌ¿ëÇÏ¿© flexural stress¸¦ °¡ÇÏ¿© Æı« °­µµ¸¦ ÃøÁ¤ÇÏ¿´À¸¸ç 95% À¯ÀÇ ¼öÁØ¿¡¼­ one-way ANOVA/ Scheffes post-hoc test¸¦ ½ÃÇàÇÏ¿© Åë°è ºÐ¼®ÇÏ¿´´Ù. ´ÙÀ½°ú °°Àº °á·ÐÀ» ¾òÀ» ¼ö ÀÖ¾ú´Ù. 1. ³»ºÎ °­È­Àç I beamÀ» »ç¿ëÇÑ ½ÇÇ豺ÀÌ À¯ÀǼº ÀÖ°Ô ³ôÀº Æı« °­µµ °ªÀ» º¸¿´´Ù (P<0.05). 2. Ç¥¸é ó¸® ¹æ¹ý¿¡ µû¸¥ Â÷ÀÌ´Â ³ªÅ¸³ªÁö ¾Ê¾Ò´Ù (P>0.05). 3. º¹ÇÕ·¹Áø Àη¹ÀÌ ºê¸´ÁöÀÇ Æı«´Â °­È­ Àç·á¸¦ »ç¿ë ½Ã¿¡´Â º¹ÇÕ·¹Áø°ú °­È­ Àç·á°£¿¡ ºÐ¸® Æı«°¡ ³ªÅ¸³µÀ¸¸ç »ç¿ëÇÏÁö ¾ÊÀº °æ¿ì¿¡´Â ¼öÁ÷Æı« °æÇâÀÌ ³ªÅ¸³µ´Ù. 4. U beam¿¡ À¯Áö holeÀ» Çü¼ºÇÑ °æ¿ì Æı« °­µµ Áõ°¡¸¦ ½ÃÅ°Áö ¾Ê¾Ò´Ù.

The purpose of this study is to evaluate the effects of surface treatment and composition of reinforcement material on fracture strength of fiber reinforced composite inlay bridges. The materials used for this study were I-beam, U-beam TESCERA ATL system and ONE STEP(Bisco, IL, USA). Two kinds of surface treatments were used; the silane and the sandblast. The specimens were divided into 11 groups through the composition of reinforcing materials and the surface treatments. On the dentiform, supposing the missing of Maxillary second pre-molar and indirect composite inlay bridge cavities on adjacent first pre-molar disto-occlusal cavity, first molar mesio-occlusal cavity was prepared with conventional high-speed inlay bur. The reinforcing materials were placed on the proximal box space and build up the composite inlay bridge consequently. After the curing, specimen was set on the testing die with ZPC. Flexural force was applied with universal testing machine (EZ-tester; Shimadzu, Japan). at a cross-head speed of 1 mm/min until initial crack occurred. The data was analyzed using one-way ANOVA/Scheffes post-hoc test at 95% significance level. Groups using I-beam showed the highest fracture strengths (p<0.05) and there were no significant differences between each surface treatment (p>0.05) Most of the specimens in groups that used reinforcing material showed delamination. 1. The use of I-beam represented highest fracture strengths (p<0.05) 2. In groups only using silane as a surface treatment showed highest fracture strength, but there were no significant differences between other surface treatments (p>0.05). 3. The reinforcing materials affect the fracture strength and pattern of composites inlay bridge. 4 The holes at the U-beam did not increase the fracture strength of composites inlay bridge.

Å°¿öµå

°­È­Àç·á;Ç¥¸éó¸®;Æı« °­µµ
Reinforcement material;Surface treatments;Tescera ATL;Universal testing machine;Fracture strength;I beam

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI